ALFA. Revista de Investigación en Ciencias
Agronómicas y Veterinarias
Mayo-agosto
2024 / Volumen 8, Número 23
ISSN:
2664-0902 / ISSN-L: 2664-0902
https://revistaalfa.org
pp.
652 – 661
Physicochemical characterization of andean
papaya in southern Peru
Caracterización fisicoquímica de papaya andina en
el sur de Perú
Caracterização
físico-química da papaia andina no sul do Peru
Franklyn Elard Zapana Yucra1,3
franklyn04.elard@gmail.com
https://orcid.org/0000-0001-9166-3843
Winy del Pilar Valdez Baca2
valdez.wp@gmail.com
https://orcid.org/0000-0002-6497-4387
Edwin Chila Choque3
edchila@gmail.com
https://orcid.org/0000-0003-0812-8562
Ricardo Nahuel Valenzuela Antezana2
antezana.rn@gmail.com
https://orcid.org/0000-0003-2972-1568
1Universidad Nacional del Altiplano. Puno, Perú
2Centro de Investigación y Desarrollo AGROSER. Puno,
Perú
3Universidad Peruana Unión. Puno, Perú
Artículo recibido 20 de marzo 2024 | Aceptado 26 de abril 2024 |
Publicado 2 de mayo 2024
Escanea en tu dispositivo móvil o revisa este artículo en:
https://doi.org/10.33996/revistaalfa.v8i23.293
The Andean papaya (Carica pubescens) is an underexplored fruit with
significant agro-industrial potential due to its unique characteristics and
non-seasonal production. This study aimed to characterize Andean papaya
produced by the “Asociación de Productores de Papaya Andina Orgánica de la
Provincia de Sandia” (ASPPAO) in Peru. Random samples were analyzed one-day
post-harvest to assess weight distribution, physicochemical properties, and
color. Results indicated an average fruit weight of 192.26 ± 19.86 g, with a
distribution of 56.62% mesocarp, 26.73% endocarp (including 5.61% seeds and
21.12% mucilage), and 16.65% peel. The endocarp, which is the most used part
for processing, had a favorable proportion and high value compared to other
fruits. The fruit had an average width of 93.18 ± 9.36 mm, height of 69.61 ±
9.55 mm, and volume of 220.50 ± 35.39 cm³, showing variation due to size
differences between fruits. Each fruit contained an average of 150.10 ± 19.93
seeds, with a texture of 9.52 ± 2.28 kg/cm², a mesocarp thickness of 11.57 ±
1.30 mm, and a pH of 4.75 ± 0.71. The color analysis revealed that the peel was
yellow, the pulp slightly yellow, the mucilage values close to white, and the
seeds light brown. The fruit had a low total solids content and titratable
acidity expressed in vitamin C with a maturity index of 14.37 ± 3.29.
Additionally, chemical differences were observed between the pulp and mucilage,
with the latter having higher values of total solids and titratable acidity and
slightly more acidic pH values. Further studies are necessary to investigate
the chemical content of this product and its potential health effects.
Key words: Andean papaya;
Carica pubescens; Maturity index; Sandia; ASPPAO
RESUMEN
La papaya andina (Carica pubescens) es una fruta poco explorada con un
importante potencial agroindustrial debido a sus características únicas y a su
producción no estacional. Este estudio tuvo como objetivo caracterizar la
papaya andina producida por la «Asociación de Productores de Papaya Andina
Orgánica de la Provincia de Sandia» (ASPPAO) en Perú. Se analizaron muestras
aleatorias un día después de la cosecha para evaluar la distribución del peso,
las propiedades fisicoquímicas y el color. Los resultados indicaron un peso
promedio del fruto de 192,26 ± 19,86 g, con una distribución de 56,62% de
mesocarpo, 26,73% de endocarpo (incluyendo 5,61% de semillas y 21,12% de
mucílago) y 16,65% de cáscara. El endocarpio, que es la parte más utilizada
para la transformación, tenía una proporción favorable y un valor elevado en
comparación con otras frutas. Los frutos tenían una anchura media de 93,18 ±
9,36 mm, una altura de 69,61 ± 9,55 mm y un volumen de 220,50 ± 35,39 cm³,
mostrando variaciones debidas a las diferencias de tamaño entre los frutos.
Cada fruto contenía una media de 150,10 ± 19,93 semillas, con una textura de
9,52 ± 2,28 kg/cm², un grosor del mesocarpio de 11,57 ± 1,30 mm, y un pH de
4,75 ± 0,71. El análisis del color reveló que la cáscara era amarilla, la pulpa
ligeramente amarilla, los valores del mucílago cercanos al blanco y las
semillas marrón claro. El fruto tenía un bajo contenido en sólidos totales y
acidez titulable expresada en vitamina C, con un índice de madurez de 14,37 ±
3,29. Además, se observaron diferencias químicas entre la pulpa y el mucílago,
presentando este último valor más alto de sólidos totales y acidez titulable y
valores de pH ligeramente más ácidos. Son necesarios más estudios para
investigar el contenido químico de este producto y sus posibles efectos sobre
la salud.
Palabras clave: Papaya andina; Carica pubescens; Índice de madurez; Sandia; ASPPAO
RESUMO
O mamão andino (Carica
pubescens) é uma fruta pouco explorada com grande potencial agroindustrial
devido às suas características únicas e à produção não sazonal. Este estudo
teve como objetivo caracterizar o mamão andino produzido pela “Asociación de
Productores de Papaya Andina Orgánica de la Provincia de Sandia” (ASPPAO) no
Peru. Amostras aleatórias foram analisadas um dia após a colheita para avaliar
a distribuição do peso, as propriedades físico-químicas e a cor. Os resultados
indicaram um peso médio do fruto de 192,26 ± 19,86 g, com uma distribuição de
56,62% de mesocarpo, 26,73% de endocarpo (incluindo 5,61% de sementes e 21,12%
de mucilagem) e 16,65% de casca. O endocarpo, que é a parte mais usada para
processamento, teve uma proporção favorável e alto valor em comparação com
outras frutas. Os frutos tinham uma largura média de 93,18 ± 9,36 mm, altura de
69,61 ± 9,55 mm e volume de 220,50 ± 35,39 cm³, mostrando variação devido às
diferenças de tamanho entre os frutos. Cada fruto continha uma média de 150,10
± 19,93 sementes, com textura de 9,52 ± 2,28 kg/cm², espessura do mesocarpo de
11,57 ± 1,30 mm e pH de 4,75 ± 0,71. A análise de cor revelou que a casca era
amarela, a polpa ligeiramente amarela, os valores de mucilagem próximos ao
branco e as sementes marrom-claras. O fruto tinha baixo teor de sólidos totais
e acidez titulável expressa em vitamina C, com um índice de maturidade de 14,37
± 3,29. Além disso, foram observadas diferenças químicas entre a polpa e a
mucilagem, com a última apresentando valores mais altos de sólidos totais e
acidez titulável e valores de pH ligeiramente mais ácidos. São necessários mais
estudos para investigar o conteúdo químico desse produto e seus possíveis
efeitos à saúde.
Palavras-chave: Papaia andina; Carica
pubescens; Índice de maturidade; Sandia; ASPPAO
Figure 1. A) Characterization of weight distribution and B) seed number
Experimental design.
Weight
Distribution
The
results are shown in Table 1, indicating variability in the weight of the
fruits, with a minimum value of 160.39 g and a maximum value of 215.20 g. The
mesocarp had the highest weight, followed by the endocarp and epicarp, with
percentages representing 56.62% for mesocarp compared to 26.73% and 16.65%,
respectively. Additionally, there was a high mucilage content of 21.12%
relative to the total weight, which was subjected to a pectin presence test.
The test was positive, indicating a medium-high pectin content in the mucilage,
unlike traditional papaya (Carica papaya), as indicated by Ríos (21).
Table 1. Andean papaya weight distribution.
N° |
FW(g) |
EPW(g) |
MW(g) |
ENW(g) |
SW(g) |
MUW(g) |
%EPW |
%MW |
%ENW |
%SW |
%MUW |
x̄ |
191.26 |
31.54 |
108.74 |
50.98 |
10.65 |
40.33 |
16.65 |
56.62 |
26.73 |
5.61 |
21.12 |
SE |
19.86 |
4.41 |
16.90 |
6.73 |
2.91 |
6.25 |
2.78 |
3.99 |
3.01 |
1.62 |
2.63 |
x̄:
average, SE: standard error
The
percentage of seeds at 5.61% was higher than that of traditional papaya (Carica
papaya), as indicated by Ríos (21), and higher than for cocoa, as indicated by
Álvarez (22). This is due to the lower weight of these other fruits and the
limited empty space in the mesocarp.
The
results regarding peel yield were 83.35%, while Cornejo (23) obtained 85.68%.
The difference arises because Cornejo (23) used chemical peeling, which
provides a better final presentation of the product. This author also
determined TA and pH values of 0.34 and 4.20, respectively. Concha (24) determined
TA 0.37%, pH 4.20, TSS 6.00, and humidity 90.49%. In this study, values of TA
0.392 ± 0.08, TSS 5.41 ± 0.51, and pH 4.75 ± 0.71 were obtained, indicating
that Andean papaya from Sandia has more vitamin C compared to the results of
Cornejo (23), who used Andean papaya from Arequipa, and Concha (24), who used
Andean papaya from Venezuela. The higher TA and pH values are due to the
organic raw material cultivated at high altitude.
Regarding
the mesocarp percentage, 56.62% ± 3.99% was obtained, a higher value than that
reported by de Jesús Guerrero et al. (25) for traditional papaya (50%), due to
the size difference. Rehm & Espig (26) used the CIE Lab color system to
determine color in different fruits, including Andean papaya, obtaining similar
values to those in this study. Regarding the epicarp, pulp color, and mucilage,
no background information was found. It would also be important to characterize
these wastes, as recommended by Neyra-Vásquez et al. (27).
Physical Characteristics
The
results are detailed in Table 2, the characteristic with the highest standard
deviation (SE) is volume, due to the variety of sizes of the fruit, with an
average volume of 220.5 ± 35.39 cm³. The average height and width were 93.18 ±
9.36 mm and 69.61 ± 9.55 mm, respectively. The texture of Andean papaya is
firmer than that of traditional papaya, with an average resistance to
penetration of 9.52 ± 2.28 kg/cm² compared to 7.68 kg/cm² found by Ríos (21).
On average, there were 150 seeds per fruit. The mesocarp thickness was, on
average, 11.57 ± 1.30 mm.
Table 2. Andean papaya physical
characteristics.
N° |
L(mm) |
A(mm) |
V(cm³) |
SN |
T(kg/cm²) |
MT(mm) |
x̄ |
93.18 |
69.61 |
220.50 |
150.10 |
9.52 |
11.57 |
SE |
9.36 |
9.55 |
35.39 |
19.93 |
2.28 |
1.30 |
x̄:
average, SE: standard error
The
results indicate a significant variability in the physical characteristics of
Andean papaya. The firmness of the fruit suggests that it may have better
resistance to mechanical damage during handling and transport compared to
traditional papaya. The average seed number and mesocarp thickness also provide
valuable information for processing and industrial applications.
In
comparison with traditional papaya, the higher firmness and mesocarp thickness
might contribute to its suitability for different agro-industrial processes. These
physical attributes could enhance the quality and shelf life of processed
products derived from Andean papaya.
Chemical Characteristics
The
results are shown in Table 3. The total soluble solids (TS) content of the pulp
was lower than that of the mucilage: 5.41 ± 0.51 °Brix versus 9.36 ± 0.86
°Brix, and the opposite in pH value: 4.75 ± 0.71 versus 4.39 ± 0.10. For
titratable acidity (TA), the content was higher in the mucilage: 0.622 ± 0.07%
versus 0.392 ± 0.08% in the pulp. The TA value was higher than that of
traditional papaya (C. papaya) as indicated by Gaona & Ramírez (1) and Ríos
(21), and the average maturity index (MI) was 14.37.
Table 3. Andean papaya chemical characteristics.
N° |
TS (°Brix) PU |
pH PU |
%TA PU |
MI |
TS (°Brix) M |
pH M |
%TA M |
x̄ |
5.41 |
4.75 |
0.392 |
14.37 |
9.36 |
4.39 |
0.622 |
SE |
0.51 |
0.71 |
0.08 |
3.29 |
0.86 |
0.10 |
0.07 |
x̄:
average, SE: standard error
The
higher TS content in the mucilage compared to the pulp indicates that the
mucilage has a higher concentration of soluble sugars. This finding aligns with
the higher TA value in the mucilage, suggesting that the mucilage contributes
significantly to the fruit's acidity. The pH values indicate that both the pulp
and mucilage are slightly acidic, with the pulp being slightly more acidic than
the mucilage.
The
maturity index (MI) of 14.37 is an important indicator of the fruit's ripeness
and quality, providing a balance between sweetness and acidity. This value is
comparable to other fruits used in agro-industrial processes, suggesting that
Andean papaya has suitable characteristics for various applications.
In
comparison with traditional papaya, the higher TA and pH values in Andean
papaya could be attributed to the organic cultivation practices and the
high-altitude growing conditions, which are known to affect the chemical
composition of fruits.
Color Characteristics
The
results are detailed in Table 4 using the CIE Lab color system. It was noted
that the peel had a higher lightness value (L) of 58.03 compared to 57.37 for
the pulp. The *a and *b values suggested that the peel had a yellow color
similar to the pulp but with less intensity. The mucilage was white with a high
value of L (60.28 ± 5.99), while the pulp was light brown with values of *a:
7.30, 3.32, 3.48, 13.08 and *b: 49.84, 22.98, 7.82, 17.49, respectively.
Table 4. Andean papaya color characteristics.
L |
a* |
b* |
L |
a* |
b* |
||
Peel |
x̄ |
58.03 |
7.30 |
49.84 |
SE |
2.15 |
2.85 |
Pulp |
x̄ |
57.37 |
3.32 |
22.98 |
SE |
1.66 |
1.66 |
Mucilage |
x̄ |
60.28 |
3.48 |
7.82 |
SE |
5.99 |
2.99 |
Seed |
x̄ |
31.92 |
13.08 |
17.49 |
SE |
4.46 |
3.63 |
x̄: average,
SE: standard deviation
The
lightness value (L) indicates how light or dark a color appears, with higher
values representing lighter colors. The Andean papaya peel had a slightly
higher lightness value than the pulp, indicating a marginally lighter
appearance. The mucilage had the highest lightness value, making it the
lightest part of the fruit, while the seeds were significantly darker.
The *a
values represent the red-green axis, where positive values indicate red tones
and negative values indicate green tones. The peel had higher *a values
compared to the pulp, suggesting a more intense red color. The *b values
represent the yellow-blue axis, where positive values indicate yellow tones and
negative values indicate blue tones. The peel had higher *b values than the
pulp, indicating a more intense yellow color Table 5.
Table 5. Andean papaya color range.
|
Min |
Mean |
Max |
Peel |
|
|
|
Pulp |
|
|
|
Mucilage |
|
|
|
Seed |
|
|
|
These
color characteristics are essential for the visual appeal of the fruit and its
derived products. The differences in lightness and color intensity between the
different parts of the fruit can be crucial for consumer acceptance and
marketability. Additionally, the high lightness value of the mucilage could be
beneficial for processing into products where a light color is desired.
According
to Rehm & Espig (26), the CIE Lab color system is a standardized method for
determining color in different fruits, including Andean papaya, obtaining
values similar to those of this study. The information about the color
characteristics of the epicarp, pulp, and mucilage for Andean papaya was not
found in other sources; therefore, it would be important to characterize these
wastes as recommended by Neyra-Vásquez et al. (27).
CONCLUSIONS
1. Gaona I, Ramírez M. Technical manual for the
organic production of Andean papaya. Dirección Regional Agraria-Puno–Perú;
2013. 42 p.
2. Hernández I, Sánchez M. Management and feeding of
small ruminants with high-quality forages in the Caribbean. Santo Domingo:
Inter-American Institute for Cooperation on Agriculture; 2014. 122 p.
3. Uribe E, Delgadillo A, Giovagnoli-Vicuña C,
Quispe-Fuentes I, Zura-Bravo L. Extraction techniques of bioactive compounds
and determination of the antioxidant capacity of the fruit of the Chilean
papaya (Vasconcellea pubescens). J Chem. 2015;2015:1-8. https://doi.org/10.1155/2015/347532
4. Repo de Carrasco R, Encina C. Determination of
antioxidant capacity and bioactive compounds of native Peruvian fruits. Rev Soc
Quím Perú. 2008;74(2):108-24. Available from: http://www.scielo.org.pe/scielo.php?pid=s1810-634x2008000200004&script=sci_arttext
5. World Health Organization (WHO). Global strategy
on diet, physical activity and health. 57th World Health Assembly; 2004.
Available from: https://iris.who.int/bitstream/handle/10665/43037/924359222X_spa.pdf?sequence=1
6. FAO. Fruit bearing forest trees: technical notes.
FAO Forestry Paper 34. 1982. p. 140-3.
7. Viteri P, Posso M, Sotomayor A, Putacuar N. Plants
and fruits produced: Production of plants and kilograms of fruit. National
Institute of Agricultural Research. Santa Catalina Experimental Station.
National Fruit Growing Program. Annual Report 2021. 2022:128-30. Available
from: https://shorturl.at/bdxy
8. Alonso M, Tornet Y, Aranguren M, Ramos R,
Rodríguez K, Pastor C. Characterization of the fruits of four cultivars of
papaya from the Solo group, introduced in Cuba. Agronomía Costarricense:
Revista de Ciencias Agrícolas. 2008;32(2):169-75. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=2931068
9. Peña R, Galecio M, Guerrero J. Production,
quality, and profitability of three ecotypes of goldenberry (Physalis peruviana
L.). Manglar. 2021;18(3):231-8. Available from: https://erp.untumbes.edu.pe/revistas/index.php/manglar/article/view/260
10. Mazza G, Quiñones Tapia H. Functional foods:
Biochemical and processing aspects. 2000. Available from: https://www.sidalc.net/search/Record/KOHA-OAI-AGRO:10134/Description
11. Estévez AM, Escobar B, Sepúlveda M. Physical and
rheological characterization of seeds from three leguminous trees. IDESIA
(Chile). 2012;30(1):83-91. Available from: https://n9.cl/3a9l1i
12. García-Salcedo Á, Torres-Vargas O, Ariza-Calderón
H. Physical-chemical characterization of quinoa (Chenopodium quinoa Willd.),
amaranth (Amaranthus caudatus L.), and chia (Salvia hispanica L.) flours and
seeds. Acta Agronómica. 2018;67(2):215-22. Available from: https://doi.org/10.15446/acag.v67n2.63666
13. González-Bonilla S, Marín-Arroyo M.
Characterization and classification of lulo (Solanum quitoense Lam.) fruits by
ripening stage using partial least squares discriminant analysis (PLS-DA). Agronomía Colombiana.
2022;40(3):419-28. Available from: https://doi.org/10.15446/agron.colomb.v40n3.103082
14. Guerreo Álvarez D, Baena L. Physicochemical
characterization and morphological properties of chitin and chitosan from
Bombyx mori L. Hybrid Pílamo 1. Acta Agronómica. 2022;71(1):29-38. Available
from: https://doi.org/10.15446/acag.v71n1.100854
15. Moya-León M, Moya M, Herrera R. Ripening of
mountain papaya (Vasconcellea pubescens) and dependence on ethylene in some
ripening events. Postharvest Biology and Technology. 2004;34(2):211-8.
Available from: https://doi.org/10.1016/j.postharvbio.2004.05.005
16. Nuñez J, Ortiz de Bertorelli L, Graziani de
Fariñas L, Ramírez A, Trujillo A. Characterization of the fruit and seed of
breadnut (Artocarpus camansi Blanco). Bioagro. 2011;23(1):51-6. Available from:
https://ve.scielo.org/scielo.php?pid=S1316-33612011000100007&script=sci_arttext
17. Araya-Morice A, Mora-Norori AL, Cubero-Castillo E,
Azofeifa A, Araya-Quesada Y. Physicochemical and sensory characterization of
two rice (Oryza sativa) varieties during the silo aging process. Agronomía
Mesoamericana. 2022;33(Especial):51586. doi:10.15517/am.v33iEspecial.51586
18. Crosa M, Burzaco P, Pastorino N, Irisity M,
Gioscia D, Ayres C. Physicochemical and nutritional characterization of Butia
capitata fruit and its sieved pulp. Innotec. 2011;(6):3-6. Available from: https://www.redalyc.org/pdf/6061/606166711001.pdf
19. Brunini MA, Macedo NB, Coelho CV, Siqueira GFD. Physical and chemical
characterization of acerolas from different growing regions. Revista Brasileira de
Fruticultura. 2004;26:486-9. Available from: https://www.scielo.br/j/rbf/a/Jq8xJLKXVBjQn5PLMrJsmQd/?format=html&lang=pt
20. Simirgiotis M, Caligari P, Schmeda-Hirschmann G.
Identification of phenolic compounds from the fruits of the mountain papaya
Vasconcellea pubescens A. DC. grown in Chile by liquid chromatography–UV
detection–mass spectrometry. Food Chemistry. 2009;115(2):775-84. Available
from: https://doi.org/10.1016/j.foodchem.2008.12.071
21. Ríos M, Márquez C, Ciro H. Osmotic dehydration of
Hawaiian papaya (Carica papaya L.) fruits in four sweetening agents. Revista Facultad Nacional
de Agronomía Medellín. 2005;58(2):2998-3002. Available from: http://www.scielo.org.co/scielo.php?pid=S0304-28472005000200013&script=sci_arttext
22. Álvarez C, Pérez E, Lares M. Physical and chemical
characterization of fermented, dried, and roasted cocoa beans grown in the
Cuyagua region, Aragua state. Agronomía Tropical. 2007;57(4):249-56. Available
from: https://ve.scielo.org/scielo.php?pid=S0002-192X2007000400001&script=sci_arttext
23. Cornejo J, Guevara A. Dehydration of mountain
papaya (Carica pubescens) by combined methods of osmosis and conventional
drying. Anales
Científicos de la UNALM. 2007:39-49. Available from: https://www.academia.edu/9614638/anales_cient%C3%ADficos
24. Concha J, Pérez A, Vargas M. Obtaining mountain
papaya (Carica pubescens) powder by spray drying. Revista Ingeniería UC.
2002;9(1). Available from: https://www.redalyc.org/pdf/707/70790109.pdf
25. De Jesús Guerrero E, Rubio W, Torres W, Saavedra
S, Muñoz M, Reyes C, et al. Manual for the Cultivation of Fruit Trees in the
Tropics. Produmedios; 2012. Available from: https://n9.cl/f9u82x
26. Swaine M, Rehm S, Espig G. Cultivated plants of
the tropics and subtropics (translated by McNamara G, Ernsting C). Verlay Josef
Margraf; 1991. viii + 552 p. ISBN 3-8236-1169-0. Price: DM49.00 (hardcover).
Journal of Tropical Ecology. 1992;8(1):86. doi:10.1017/S026646740000612X